Crop/weed discrimination in simulated images
نویسندگان
چکیده
In the context of site-specific weed management by vision systems, an efficient image processing for a crop/weed discrimination is required in order to quantify the Weed Infestation Rate (WIR) in an image. This paper presents a modeling of crop field in presence of different Weed Infestation Rates and a set of simulated agronomic images is used to test and validate the effectiveness of a crop/weed discrimination algorithm. For instance, an algorithm has been implemented to firstly detect the crop rows in the field by the use of a Hough Transform and secondly to detect plant areas by a region based-segmentation on binary images. This image processing has been tested on virtual cereal fields of a large field of view with perspective effects. The vegetation in the virtual field is modeled by a sowing pattern for crop plants and the weed spatial distribution is modeled by either a Poisson process or a Neyman-Scott cluster process. For each simulated image, a comparison between the initial and the detected weed infestation rate allows us to assess the accuracy of the algorithm. This comparison demonstrates an accuracy of better than 80% is possible, despite that intrarow weeds can not be detected from this spatial method.
منابع مشابه
A Crop/Weed Field Image Dataset for the Evaluation of Computer Vision Based Precision Agriculture Tasks
In this paper we propose a benchmark dataset for crop / weed discrimination, single plant phenotyping and other open computer vision tasks in precision agriculture. The dataset comprises 60 images with annotations and is available online. All images were acquired with the autonomous field robot Bonirob in an organic carrot farm while the carrot plants were in early true leaf growth stage. Intra...
متن کاملDiscrimination of Crop and Weeds on Visible and Visible/Near-Infrared Spectrums Using Support Vector Machine, Artificial Neural Network and Decision Tree
Weeds are regarded as farmers' natural enemy. In order to avoid excessive pesticide residues, the destruction of ecological environment, and to guarantee the quality and safety of agricultural products, it is urgent to develop highly-efficient weed management methods. Amongst, weed discrimination is the key part. There have been a lot of researches on weed detection/discrimination using spectra...
متن کاملWeed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images
The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band ...
متن کاملMachine Vision-based Weed Spot Spraying: a Review and Where next for Sugarcane?
AUTOMATED precision weed spot spraying in the sugarcane industry has potential to increase production while reducing herbicide usage. However, commercially-available technologies based on sensing of weed optical properties are typically restricted to detecting weeds on a soil background (i.e. detection of green on brown) and are not suited to detecting weeds among a growing crop. Machine vision...
متن کاملSpatial and Spectral Methods for Weed Detection and Localization
This study concerns the detection and localization of weed patches in order to improve the knowledge on weed-crop competition. A remote control aircraft provided with a camera allowed to obtain low cost and repetitive information. Different processings were involved to detect weed patches using spatial then spectral methods. First, a shift of colorimetric base allowed to separate the soil and p...
متن کامل